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Abstract— Although autonomous driving technology has
made tremendous progress in recent years, it is still challenging
to predict the intentions and trajectories of pedestrians. The
state-of-the-art methods suffer from two problems. (1) Existing
works consider these two tasks separately, ignoring the connec-
tion between them. (2) The selection and integration of inputs
for these tasks are not well designed. In this paper, these two
tasks are taken into consideration in a unified model. In this
way, the information provided by the labels of each other is
shared, improving the performance of both tasks. Besides, in
addition to the bounding boxes and speeds, orientation and road
semantic segmentation features are taken into consideration to
show the potential intention and road context of the pedestrian.
And all the inputs are weighted by an attention module before
integration. Meanwhile, a Transformer encoder is applied in
our method to extract the temporal information from the fused
feature sequence. Our method outperforms all previous models
for both trajectory prediction and intention prediction tasks on
the JAAD dataset and PIE dataset.

I. INTRODUCTION

The past decade has witnessed the rapid development of
autonomous driving techniques. The capability to predict the
intentions and trajectories of vulnerable road users (VRUs),
especially pedestrians, will significantly improve the safety
of autonomous systems. However, even though the present
autonomous systems are competent to detect road users
well, there are still challenges predicting the intentions and
trajectories of pedestrians. Three reasons limit the ability of
autonomous driving systems to predict the intentions and
trajectories of pedestrians. (1) The definition of intention
in previous works brings misunderstanding to the system,
as the label of pedestrian does not vary with time. (2)
Intention prediction and trajectory prediction are regarded
as two separate tasks, and the connection between them is
neglected. (3) The potential intention of movement and the
environment around pedestrians are not well provided by
the input, and diverse inputs are simply concatenated during
information fusion.

In most previous works, pedestrians’ intention is defined
as whether the pedestrians will cross the road in front of the
vehicle [9], [20], [24]. That definition gives every pedestrian
a fixed intention label, which does not vary with time and
distance. The intention label will be marked as “crossing”
all the time, even long before crossing or after crossing, as
long as the pedestrian has crossed the road. That may lead
to confusion for autonomous driving. So, in our definition,
we only concern about whether the pedestrians will cross in
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Fig. 1. The intention prediction task in our work. The target will be labeled
as a positive sample only when crossing takes place in the forecast period.

the next fixed period. As shown in Fig. 1, the target will be
labeled as a positive sample only when crossing occurs in
the forecast period.

Based on the above definition, the future trajectories
and intentions are highly related but irreplaceable for two
reasons. (1) Using future trajectories as supervision can help
the model learn the potential intentions of the pedestrians,
while the information from future crossing intention can
help the model rectify the predicted trajectory. (2) Future
trajectory provides more information for autonomous driving
as it contains every location of a pedestrian, while pedestrian
crossing intention gives more direct clues for driving deci-
sion. Therefore, a new framework is needed to exploit the
relationship between the two tasks to improve performance.

In terms of input information selection, most previous
methods only input historical trajectory information for pre-
diction [10], [18]. Although a small number of pedestrian
information (key point detection results [9], appearance
features [19], etc.) are added, the information selected is
relatively rough. The contexts are not directly related to the
pedestrians in [20], and the appearance features are extracted
through a pre-trained classification network in [19], which
have low relevance to tasks. Multi-inputs are simply concate-
nated during multi-information fusion, which is challenging
to extract pedestrians’ intentions and trajectories.

In this paper, we propose a novel multi-task framework for
intentions and trajectories prediction. We select the pedes-
trian’s historical trajectory, speed, orientation, and the road
semantic segmentation as the input of our framework. The
orientation sequences can well reflect the potential movement
intention, and the road semantic segmentation around the
pedestrians shows the context interaction of the pedestrians.
To union these clues effectively, we introduce an attention
module to help the network pay attention to the critical
parts in the fusion information. In addition, we utilize a
Transformer encoder to extract temporal information. The
temporal self-attention module in Transformer offers strong

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 27 - October 1, 2021. Prague, Czech Republic

978-1-6654-1714-3/21/$31.00 ©2021 IEEE 7082

20
21

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 | 

97
8-

1-
66

54
-1

71
4-

3/
21

/$
31

.0
0 

©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IR

O
S5

11
68

.2
02

1.
96

36
24

1

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 08,2022 at 08:05:12 UTC from IEEE Xplore.  Restrictions apply. 



competence to extract sequential information. Besides, in-
stead of processing the embedding sequence step by step like
LSTM [12], Transformer processes the whole embedding se-
quence, which makes it more suitable for parallel computing.

The contributions of this work are summarized as follows.
• We propose a novel multi-task joint training framework

to realize pedestrian trajectory prediction and intention
prediction.

• We build a novel multi-input network based on an
attention module and the Transformer encoder.

• The performance of trajectory prediction and intention
prediction in our proposed network reaches state-of-the-
art on the PIE dataset and JAAD dataset.

II. RELATED WORK

Related work can be primarily categorized as three compo-
nents: the definition of behavior prediction, the selection of
input information, and the method for sequential modeling.

Behavior prediction for pedestrians. Understanding
pedestrians’ intentions and predicting their behavior in traffic
scenes is an important task for autonomous driving. Early
research on pedestrians mainly focused on the trajectories
of pedestrians [17], [27], [28], as trajectories are easy to
obtain and can intuitively reflect the motion of pedestrians.
However, it is difficult to achieve a deep understanding of
pedestrians’ behavior simply by trajectories. In order to solve
this problem, JAAD [20] release the first pedestrian inten-
tion prediction dataset to characterize pedestrians’ crossing
intentions, and many works are conducted on this dataset
[7], [11], [16], [22], [24], [24]. However, the prediction
of pedestrian’s intentions is simply defined as whether the
crossing occurs or not regardless of time. Subsequently,
[19] publics a new data set, which supplements the label
of pedestrian crossing tendency, but still fails to consider
the relationship between crossing and time. Therefore, in
this paper, we define the intention prediction problem as
whether the pedestrian will cross in the next fixed period.
At the same time, as a supplement to intention information,
trajectory prediction tasks for pedestrians are also integrated
into our framework, which can help improve the performance
of intention prediction and provide more behavioral clues.

Input information selection. In order to predict the
intention of pedestrians, previous works try to add different
input information. [4] is one of the earliest works for
intention analysis of pedestrians, and it takes the location
and speed of pedestrians as input. As motion is insufficient
to reflect the status of pedestrians, [6], [20], [21] use context
information for intention prediction, including traffic lights,
lanes, the width of the road, and so on. As a supplement, [9]
judges the crossing intention of pedestrians by their key-
point features, and [19] proposes an intention prediction
model taking trajectories and appearance as input. However,
in these works, the context is extracted from the whole
image rather than the region around the pedestrians, and
the appearance features are extracted through classification
networks, which are indirectly related to the task. In this
work, we introduce the road semantic segmentation around

pedestrians and the pedestrian’s orientation as the input of
the network, to provide more relevant information for the
intentions and trajectories prediction task.

Sequential modeling. For the temporal information ex-
traction from the input sequence, different methods have
been proposed in different works. Early works model sequen-
tial information by Gaussian processes [25] and Bayesian
nonparametric reachability trees [3]. With the emergence
of Recurrent Neural Network (RNN) [29] networks, RNN-
based networks have also been applied to the trajectory
prediction [1], [14], [15]. Because of the problem of van-
ishing gradient in the RNN network, the LSTM network
is proposed by [12]. Due to the powerful performance of
LSTM, many works based on LSTM or the variants of LSTM
are proposed to achieve sequential modeling [2], [5], [27],
[30]. However, RNN-based and LSTM-based models need to
input and process the sequence one by one, which is not only
inefficient but also difficult to obtain global information. The
proposal of Transformer [26] solves this problem well. The
Transformer encoder can extract all input information at once
through the position encoding and self-attention module,
with strong global understanding capabilities and suitability
for parallel computing. Therefore, in our work, we apply a
Transformer encoder to extract the sequential information of
pedestrians’ feature sequences.

III. PROPOSED METHOD

A. Algorithm framework

The target of our algorithm is to predict pedestrians’
trajectories and intentions for autonomous driving. We set
a fixed time TO as the observation period, a fixed time
TF as the forecast period. The inputs of the network are
extracted from all frames during TO, and the target outputs
are pedestrians’ trajectories and intentions during TF . The
framework of our proposed method is shown in Fig. 2.
The framework consists of 6 modules, including the input
module, feature extraction module, attention module, tem-
poral module, and prediction module. The bounding box
sequence and image sequence are sampled in observation
period TO, with the same sequence length s. Multi-inputs
including orientation, trajectories, speed, and road semantic
segmentation are obtained in the input module. The outputs
of the input module are embedded as feature sequences
with the same dimension. After feature extraction, attention
weights for all feature sequences are calculated in the atten-
tion module, and the weights are multiplied element-wised
with the feature sequences output by the feature extraction
module. By concatenating all weighted feature sequences,
fused feature sequences are generated in the feature fusion
module. Furthermore, the fused feature sequences are fed
into a Transformer encoder to extract the temporal informa-
tion. In the end, an MLP network outputs the trajectories and
intentions of the pedestrians.

B. Input module

Data preprocessing is implemented at the input module. To
represent pedestrian’s movement and the context, in addition
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Fig. 2. The proposed intention estimation and trajectory prediction framework. The system receives a sequence of images and bounding boxes. The
input module extracts the road segmentation and calculates the pedestrians’ orientation. These cues are extracted as 256-D feature vectors separately by
MLPs in the feature extraction module. After that, attention weights are calculated by Fully-connected networks in the attention module. In the feature
fusion module, different features are concatenated after element-wise multiplication with their attention. The temporal module is a Transformer network
that extracts the sequential information during the observation period. In the end, trajectories and intentions are predicted in the prediction module by a
fully-connected network. In the diagram, b means the batch size during training, and s means the sequence length of the observation period, ⊕ means
concatenation operation, and ⊗ means element-wise multiplication.

to taking the bounding boxes and pedestrians’ speed as
inputs, the orientation and road semantic segmentation is also
taken into consideration.

Historical trajectories and speeds. The trajectories and
speeds can easily be obtained by the bounding boxes and ids
from most trajectories and intention datasets. In this work,
we use the coordinates of bounding boxes sequence as every
pedestrian’s historical trajectories, and the speed is obtained
by subtracting the bounding box coordinates of the previous
frame from the next frame’s coordinates.

Pedestrian orientation. Pedestrian’s orientation sequence
can well reflect the potential movement intention, which is
very important for both trajectory prediction and intention
prediction tasks. However, most trajectory prediction and
intention prediction datasets do not contain the annotations
of orientation. As a result, we divide pedestrian’s orientation
into eight categories and build an eight classification classi-
fier to get this information. The classifier is a CNN network,
with ResNet50 pre-trained on ImageNet as its backbone,
finetuned in the CityPersons Dataset [31]. With the well-
trained classifier, pedestrian’s orientation is available in our
model.

Road segmentation. One of the most important contexts
for crossing intention prediction is the location at which
the pedestrian stands. It is hard to judge the pedestrian’s
specific position in the environment by relying solely on
the bounding boxes, which will lead to misjudgment of the
crossing intention. To get the road semantic segmentation,
we use the ERFNet [23] trained in the CityScape dataset
[8]. In addition, though there are 19 categories in CityScape,
we simplify the semantic segmentation to 3 categories:
“sidewalk”, “road”, and “others”. The road segmentation
around the pedestrian is cropped as the input of the trajectory

Input image
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probablity

(a)
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(b)

Fig. 3. Illustration of (a) pedestrian orientation classifier architecture and
(b) the division of the eight orientations. The orientation of the pedestrian
in (a) is “left”, corresponding to the category “6” in (b). Other orientations
are also shown in (b).

Bounding boxes

Input image

ERFNet

Semantic segmentation

Road segmentation
around the pedestrian

Fig. 4. The architecture of road segmentation in the input module. All
the semantic segmentation is generated by a well-trained ERFNet. Orange
bounding boxes refer to the original bounding box, and green boxes refer
to the edited boxes.

and intention prediction network. As shown in Fig. 4, the
region of interest is centering at the bottom of the original
orange boxes, twice the width and half the height of the
origin box.

To reduce the training time, all the above information is
processed in advance to avoid repeated calculations during
processing.
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C. Feature extraction and fusion

Different kinds of inputs need embedding and fusion after
preprocess. To facilitate the fusion of different types of
information, we extract every input at every frame as a 256-
dimension vector by networks. Road segmentation feature is
extracted by a CNN network, and others are extracted by
fully-connected networks.

In order to enable the neural network to pay attention to
more critical information, we introduce an attention mech-
anism module before feature fusion. As shown in Fig. 2,
attention weights are calculated by the attention module, with
all the feature vectors as input. After that, all the features
will take element-wise multiplication with corresponding
attention weight. The formulation is written as,

Gori = Φori(Fori, Ftraj , Fspeed, Froad)⊗ Fori, (1)

Gtraj = Φtraj(Fori, Ftraj , Fspeed, Froad)⊗ Ftraj , (2)

Gspeed = Φspeed(Fori, Ftraj , Fspeed, Froad)⊗ Fspeed, (3)

Groad = Φroad(Fori, Ftraj , Fspeed, Froad)⊗ Froad, (4)

where F denotes the features extracted by feature extraction
module; Φ(·) denotes an MLP network or a CNN network,
which is used to calculate the attention weights of the fea-
tures; G denotes the weighted features; ⊗ denotes element-
wise multiplication operation. The output of the attention
module will be concatenated directly in the feature fusion
module.

D. Transformer encoder

The temporal module is implemented by a Transformer
encoder. Transformer networks are first proposed in [26]
for Nature Language Processing (NLP). Unlike LSTM,
Transformer networks do not need to process embedding
sequence step by step; instead, it processes the whole em-
bedding sequence. The positional encoding module enables
the Transformer to extract temporal information with the
embeddings fed at once, which makes it suitable for parallel
computing. The Multi-head self-attention module in the
Transformer enhances the temporal relation of inputs. So the
Transformer encoder is suitable for the sequential modeling
in our method. The architecture of the Transformer encoder
is shown in Fig. 5.

Positional Encoding: The Transformer encoder encodes
time t for each embedding from the feature sequence by
positional encoding. A positional encoding mask PE is
added to the embeddings in this module. PE is calculated
as follow:

PEt,i =

sin( t

10000
i
D

) i = 2k

cos( t

10000
i−1
D

) i = 2k + 1
, (5)

where i denotes the ith dimension of the embedding, D
denotes the dimension of embeddings.

Self-Attention: The inputs are embedded into three ma-
trices: Q (Query), K (Key), and V (Value). K and V are
used to calculate the correlation among the input sequence.

Input
Embedding

Position 
encoding

Inputs

Multi-Head
Self-attention

Feed
Forward

Repeat for N times Outputs

Fig. 5. The architecture of the Transformer encoder.

An attention matrix is calculated through scale and softmax
layer. By multiplying V with the attention matrix, every part
of the outputs is merged with the temporal information from
other parts in the sequence. The formulation is shown below:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V, (6)

where dk denotes the dimension of K.

E. Multi-task joint training

The target of our algorithm is to predict pedestrians’
intentions and trajectories during the forecast period. So two
different outputs need optimization: intentions and trajecto-
ries.

Intention prediction. Intention prediction is a binary
classification task. As the number of positive samples is not
as large as the number of negative samples, we balance the
positive samples and negative samples by re-sampling the
positive samples to make the P/N ratio equals to 1:1. Binary
Cross Entropy (BCE) loss is chosen as the loss function of
the intention prediction task,

Lint(x, y) = −y · log(f(x))− (1− y)log(1− f(x)), (7)

where x denotes the input of the network, f(x) denotes the
predicted pedestrian intention, y denotes the ground truth of
pedestrian intention.

Trajectories prediction. Trajectories prediction can be
modeled as a regression task. The most intuitive method
is to directly calculate the Mean Square Error (MSE) loss
between the coordinates of ground truth trajectories and the
coordinates of the predicted trajectories,

Ltraj =

T∑
t=1

(Ct − Ĉt)2, (8)

where T denotes the sequence length to predict, Ct denotes
the tth coordinates of the ground truth location, Ĉt denotes
coordinates of the tth predicted location. However, in this
way, the outputs of the network may be harder to reach con-
vergence even though the coordinates have been normalized,
as the values of target trajectories vary a lot from sample to
sample. So we designed a new loss function to predict the
speed of pedestrians,

Ltraj =

T∑
t=1

(St − Ŝt)2, (9)

where
St = Ct − Ct−1, Ŝt = Ĉt − Ĉt−1. (10)
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To avoid the accumulation of the speed error, the final loss
function of trajectories prediction is written as,

Ltraj =

T∑
t=1

(Ct − (

t∑
i=1

Ŝi + C0))2, (11)

where Ŝi is the ith predicted speed directly output by the
network.

Automatic loss balance for joint training. The learning
objective of each prediction head in the prediction module
could be modeled as a multi-task learning problem. The total
loss function could be written as,

Ltotal = ωtrajLtraj + ωintLint, (12)

where ω denotes the weight of each task. To balance the
loss weights automatically, we adopt an adaptive strategy
proposed in [13] using task-dependent uncertainty. The final
loss function could be written as,

Ltotal = e−αLtraj + e−βLint + α+ β, (13)

where α and β is the task-dependent uncertainty, which could
be adjusted adaptively during training. We refer readers to
[13] for more details.

IV. EXPERIMENTS

In this section, we evaluate our method by comparing our
results with other state-of-the-art methods on two datasets of
intentions and trajectories prediction. Besides, we conduct
several ablation studies to discuss the influence of different
inputs, different temporal models, multi-task joint training,
and the attention module.

A. Datasets and evaluation metrics

Joint Attention Autonomous Driving (JAAD) Dataset.
JAAD [20] is a dataset for studying joint attention in the
context of autonomous driving published in 2017. It contains
346 short video clips of 5-10 seconds. Bounding boxes with
trajectory ids and crossing tags are provided for most pedes-
trians, making this dataset suitable for pedestrian intentions
and trajectories prediction evaluation. In addition, the dataset
contains traffic information for each frame.

Pedestrian Intention Estimation (PIE) Dataset. PIE [19]
is a new dataset for studying pedestrian behavior in traffic
proposed in 2019. PIE contains 56 video clips of 4-10 min-
utes. There are much more frames, pedestrians, and longer
trajectories than the JAAD dataset. Pedestrians’ bounding
boxes, trajectory ids, and behavioral annotations, including
crossing state, are also included in the dataset. There are
over 300K labeled video frames with 1842 pedestrian sam-
ples making this the largest publicly available dataset for
evaluating the performance of our work.

Evaluation metrics. To evaluate the performance of dif-
ferent methods, we use Average Precision (AP), Accuracy
(ACC) for intention prediction, and Average Displacement
Error (ADE), Final Displacement Error (FDE) for trajectory
prediction. AP is the average of precisions at different thresh-
old values between 0 and 1 in the precision-recall curve.

ADE means the root mean square error (RMSE) of all the
predicted positions and real positions during the prediction
period. FDE denotes the RMSE distance between the final
predicted positions at the end of the predicted trajectory and
the corresponding actual location. The units of both ADE
and FDE are pixels.

B. Implementation details

Input and outputs. The input sequence is a 15-frame
image sequence with the pedestrians’ bounding boxes, and
the target for prediction is the crossing intention and the
trajectories in the next 15 frames. The input and output
trajectories are defined as the bounding box sequences in
this work.

Networks. In the input module, the orientation classifier
is a CNN network with ResNet-50 as its backbone trained
on the CityPerson dataset, and the semantic segmentation
network is ERFNet trained on the CityScape dataset. The
MLP networks in the feature extraction module are all 2-
layer fully-connected networks, with Relu and BatchNor-
malization layers, and the output size of the hidden layer
is 1024. The CNN network in the feature extraction module
for road feature embedding consists of 2 CNN layers with
kernel size 3 and 1 fully-connected layer. The FC networks in
the attention module is a fully-connected network activated
by a Sigmoid layer. In the temporal module, the number
of layers N in the Transformer encoder is set to 3, and
dmodel, dK , and dV are all set to 512. The MLP networks
in the prediction module are both 3-layer fully-connected
networks. The activation function of the output layer for
intention prediction is the Sigmoid function, and the Relu
activation function is applied in the rest of the module.

C. Comparison with previous methods

Since most previous works defined pedestrian intention
prediction in different ways, we choose PIE [19] whose code
is available and SRR [16] whose definition is similar to our
work for comparison. Due to the different definitions and
pipelines for intentions and trajectories prediction, we run the
training and evaluating code provided by PIE using the same
processed data and label for a fair comparison. The training
epoch for both PIE’s code and ours is set to 100. The results
on the PIE dataset and JAAD dataset are shown in TABLE
I, and values are all evaluated in the test set. Since SRR
did not conduct trajectory prediction experiments and their
code is unavailable, only the results of intention prediction
on the JAAD dataset from the original paper are shown in the
table. All the other results are obtained by running the same
experiment three times and taking the average value. As is
shown in TABLE I, our method has better performance than
previous works in both intention prediction and trajectories
prediction tasks.

D. Ablation study

In order to evaluate different options of our network, we
launched a series of ablation experiments. To make it easier
for evaluation, all results in the tables in section IV-D are
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TABLE I
COMPARISON WITH PREVIOUS METHODS. ARROWS AFTER METRICS

INDICATE THAT THE HIGHER (↑) OR LOWER (↓) VALUE IS BETTER.

Method
JAAD Dataset PIE Dataset

Intention Trajectory Intention Trajectory
AP↑ ADE↓ FDE↓ AP↑ ADE↓ FDE↓

SRR [16] 79.28 - - - - -
PIE [19] 56.90 22.01 36.51 81.76 11.74 19.39

ours 84.48 17.73 31.34 91.66 11.08 19.28

TABLE II
COMPARISON OF DIFFERENT TEMPORAL MODELS AND DIFFERENT

NUMBER OF LAYERS

temporal network AP ↑ ACC ↑ ADE ↓ FDE ↓

LSTM 1 layer 92.95 81.80 12.26 22.26
LSTM 3 layers 92.97 81.56 12.41 22.24

Transformer 1 layer 93.95 82.35 12.46 22.68
Transformer 2 layers 93.51 81.50 11.84 21.54
Transformer 3 layers 94.25 82.46 11.82 21.47
Transformer 6 layers 93.74 81.50 11.97 21.21

tested on the PIE validation set, different from the results in
Table I which are tested on the test set.

Comparison of different temporal models. We first
compare the Transformer encoder with the Long Short-
Term Memory (LSTM) networks. We replace the 3-layer
Transformer encoder with LSTM or Transformer encoder
with other numbers of layers. As shown in TABLE II,
the Transformer encoder outperforms the LSTM networks.
Besides, with more layers, the Transformer encoder performs
better on trajectories prediction, while 3 layers are best for
intention prediction. The reason is that the deeper network
has a more robust understanding but is harder for training.
In this paper, we choose a 3-layer Transformer encoder as
the temporal module.

Comparison of multi-task and single-task. The results
of joint training and individual training of the two tasks
are shown in Table III. The first two rows of the table are
the results of separate training for intention prediction and
trajectory prediction, and the third row is the result of multi-
task joint training between the two tasks. The performance
of multi-task is better than both task training individually.
Multi-task training enables intention prediction and trajectory
prediction to share weights and the extra information brought
by each other’s labels.

Ablation study on the attention module. To evaluate
the effect of the attention module, we conduct an ablation

TABLE III
COMPARISON OF MULTI-TASK AND SINGLE-TASK

Training tasks AP ↑ ACC ↑ ADE ↓ FDE ↓

intention prediction 93.57 81.62 - -
trajectory prediction - - 11.92 21.67

intention+trajectory prediction 94.25 82.46 11.82 21.47

TABLE IV
ABLATION STUDY ON THE ATTENTION MODULE

Ways for attention module AP ↑ ACC ↑ ADE ↓ FDE ↓

No attention 92.68 82.11 12.10 21.88
Softmax attention 50.01 50.01 44.68 84.06
Sigmoid attention 94.25 82.46 11.82 21.47

TABLE V
COMPARISON OF DIFFERENT INPUTS

Inputs AP ↑ ACC ↑ ADE ↓ FDE ↓

bboxes+speed 93.07 81.86 11.49 20.69
bboxes+speed+orientation 93.10 81.87 11.62 20.83

bboxes+speed+road 94.40 82.35 11.69 20.96
bboxes+speed+orientation+road 94.25 82.46 11.82 21.47

experiment that removes the attention or replaces the sigmoid
activation function with the softmax activation function.
Results are shown in TABLE IV. When the attention module
is removed, performance drops on both intention prediction
and trajectory prediction tasks. Besides, as the dimension of
the attention matrix is 1024, using Softmax as the activation
function will make most of the attention weights close to 0,
and little information is passed to the next layer.

Comparison of different inputs. We analyze the impact
of different inputs on the performance, and the results are
shown in TABLE V. As we expect, more inputs bring
better performance in terms of intention prediction. Although
the adoption of orientation and road semantic segmentation
reduces trajectory prediction performance, this can be ex-
plained by two reasons. 1. The correlation between road
semantic segmentation and trajectory prediction is weaker
than intention prediction, and the semantic segmentation
obtained through ERFNet also brings errors 2. The bounding
boxes and speed as input are ground truth, which covers
the precise direction of movement, while the pedestrian
orientation obtained by networks will bring errors instead.
In real applications, accurate movement cannot be obtained,
and the predicted pedestrian orientation and road semantic
segmentation can be employed as a supplement to the
potential movement direction.

V. CONCLUSION

In this paper, we propose a novel multi-input and multi-
task framework that allows intention prediction and tra-
jectories prediction to be learned in a shared model. We
extract orientation and road features and combine them with
the speed and trajectory features by an attention module,
enabling the network to pay more attention to what matters.
Besides, we introduce a Transformer encoder to extract the
temporal information. Moreover, our method outperforms
the previous method on both PIE and JAAD datasets. As
a direction for future work, better models could be exploited
to improve orientation prediction and road segmentation
performance, then improving the performance of trajectories
and intention prediction.
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